
1

Parallel Programing with
MPI

2

Parallel Programming Languages

Evolution of programming methods:

• MPI is still the dominant programming technique

• Hybrid OpenMP/MPI approach most effective on supercomputers

• GPU programming develops quickly

• CUDA

• OpenACC and OpenMP

• Message Passing directly within the GPU

• New specific parallel programming languages are developed:

• Co-array Fortran, PGAS, X10, Chapel…

• New runtime systems to handle task-based parallelism:

• Charm++, HPX, Kokkos

3

Distributed memory versus shared memory

4

MPI: History

MPI 1:

• Version 1.0 (June 1994): 40 different organizations develop the MPI standard, with

various subroutines defining the first MPI library
• Version 1.1 (June 1995)
• Version 1.2 (1997)
• Version 1.3 (September 2008): final version

MPI 2:
• Version 2.0 (July 1997): include new features intentionally left out of MPI 1 such as

dynamical process management, one-sided communication, parallel I/O
• Version 2.1 (June 2008)
• Version 2.2 (September 2009)

MPI 3:
• Version 3.0 (September 2012): include new features left out of MPI 2 such as

collective non-blocking communications, Fortran 2003 bindings, interfacing with
external tools

MPI 4:

• work in progress (hybrid programming, fault tolerance, million-way parallelism)

5

Open Source libraries : can be installed on almost any architecture (for example on
your laptop)

• MPICH2 http://www.mpich.org

• Open MPI https://www.open-mpi.org

Vendors:

• Intel MPI

• Platform MPI (IBM)

• Bullx MPI

MPI: Implementations

http://www.mpich.org/
https://www.open-mpi.org/

6

MPI: Tools

Debuggers and performance analysis tools:

• Totalview https://www.roguewave.com/products-services/totalview

• DDT https://www.arm.com/products/development-tools/hpc-tools/cross-
platform/forge/ddt

• Scalasca http://www.scalasca.org

Scientific libraries

• Scalapack http://www.netlib.org/scalapack/

• PETSc http://www.mcs.anl.gov/petsc/

• FFTW http://www.fftw.org

https://www.roguewave.com/products-services/totalview
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
http://www.scalasca.org/
http://www.netlib.org/scalapack/
http://www.mcs.anl.gov/petsc/
http://www.fftw.org/

7

MPI: General Concepts

Parallel processing:
MPI is a library which allows process coordination and scheduling between millions of
processors using a message-passing paradigm.

Message attributes

• The message is sent from a source process to a target process: sender address and
recipient address

• The message contains a header

• Identifier of the sending process (sender id)

• The type of the message data (datatype)

• The length of the message data (data length)

• Identifier of the receiving process (receiver id)

• The message contains data

8

The MPI Environment

• The messages are managed and interpreted by a runtime system
comparable to a telephone provider, email system or postal company.

• Message are sent to a specific address. Receiving processes must be able to
classify and interpret incoming messages.

• An MPI application is a group of autonomous processes deployed on
different nodes, each one executing its own code and communicating to the
other processes via calls to routines in the MPI library.

9

MPI: Data Distribution

Data (grid cells or particles) are distributed between nodes and cores

using a domain decomposition strategy.

10

MPI: Basics

MPI environment variables:
include mpi.h file (MPI1-Fortran or C/C++)
use mpi module (MPI2-Fortran)

Launching the MPI environment:
 MPI_INIT() routine

C syntax Fortran syntax

Terminating the MPI environment:
MPI_FINALIZE() routine

11

MPI: Blocking Send and Receive

With blocking send and receive, if you are not
careful, you can have a deadlock. This means the
processors will wait for something that will never
happen. The classical mistake is to first call a
blocking send towards the next processor, and then
call a blocking receive from the previous processor.

12

MPI: Non-Blocking Send and Receive

Communication costs can be large. The Infiniband network latency is around
microseconds, or equivalent to thousands of processor cycles. One has to add the cost of
the message itself (limited by the bandwidth of the Infiniband network around 10 GB/sec).

Non-blocking routines can be used to perform calculations in parallel to the
communication (additional level of parallelism). No risk of deadlock but risk of memory
leak if the communication is not properly terminated.

Non-blocking send: MPI_ISEND()
Non-blocking receive: MPI_IRECV()
Wait or test: MPI_WAIT(), MPI_TEST()

The communication buffers however cannot
be used before the proper completion of the
send or receive. The user needs to test that
the communication is successful, in order to
proceed with the data -> Higher algorithmic
complexity.

Computation-Communication Overlap

13

MPI: Non-Blocking Send and Receive

14

MPI: Non-Blocking Send and Receive

15

MPI: Collective Communication

General concepts

• Collective communications are making a series of point-to-point calls hidden to
the user within one single subroutine

• A collective communication always involves all processes within the
communicator.

• A collective communication is blocking. It is finished when all the necessary
point-to-point communications are completed.

• No need to add a barrier.

• No need to specify tags.

16

MPI: Collective Communication
Types of collectives

• Global synchronization (wait for all processors to arrive): MPI_BARRIER()

• Collective transfer of fixed size data:

• Send data from one process to all other: MPI_BCAST()

• Split data from one process into all other: MPI_SCATTER()

• Collect data from all processes into one: MPI_GATHER()

• Same but collect into all: MPI_ALLGATHER(), MPI_ALLTOALL()

• Collective transfer with variable size data MPI_BCASTV(),
MPI_SCATTERV(), MPI_GATHERV(), MPI_ALLGATHERV(),
MPI_ALLTOALLV()

• Collective transfer plus additional operation on the data (MAX, MIN, +, *…)
MPI_REDUCE(), MPI_ALLREDUCE()

17

MPI Scatter

18

MPI All Reduce

19

OpenMP versus MPI

MPI is a multi-process model, for which communication between processes is explicit
and under the responsibility of the programmer.

OpenMP is a multi-thread model, within a single process. Communication between
threads is implicit . The management of communication is under the responsibility of the
compiler (and the operating system).

MPI is used on distributed memory architectures (clusters with Infiniband network).

OpenMP is used on shared-memory,
multi-core architectures.

On a cluster of many large shared-
memory nodes, the hybrid approach
(OpenMP within nodes and MPI across
nodes) can be optimal

20

Graphical Processing Units (GPU)

GPU Model
Logical View

Main
Memory

L2 L3

Main
Memory

L3L2

GPU
Memory

GPU
Memory

GPU
Memory

GPU
MemorySLOW

VERY
FAST

FAST1 thread
per core

~32 threads
per core

Copy to GPU

Copy to CPU

21

Graphical Processing Units (GPU)

GPU programming with CUDA:
NVIDIA GPUs are usually programmed using the vendor proprietary language CUDA.
It is interfaced with C and C++ to create GPU kernels.
Warning: CUDA requires a complete rewrite of the computing intensive sections of the
code. Lack of portability. Extracting maximum performance is difficult.

GPU programming with OpenACC:
Similar to OpenMP directives to load data on and retrieve data from the GPU and
translate C and Fortran code into GPU kernels.
Better portability but usually requires also a rewrite of the routines.
Available on the PGI compiler suite.

GPU programming with OpenMP:
The newest OpenMP version (4.5) allows for offloading of parallel sections to the GPU
using the target directive.
Implemented already in GNU, Intel and PGI.

GPU programming with new generation of compilers and frameworks:
The goal is to hide the dirty details to the programmer.
Legion is an example of compiler. Kokkos is an example of framework.

22

Conclusion

Parallel computing methods:

• MPI is still the dominant programming technique

• Hybrid OpenMP/MPI approach most effective on supercomputers

• GPU programming develops quickly

• CUDA

• OpenACC and OpenMP

• Message Passing directly within the GPU

• New specific parallel programming languages are developed:

• Co-array Fortran, PGAS, X10, Chapel…

• New runtime systems to handle task-based parallelism:

• Charm++, HPX, Kokkos

