Parallel Programing with
MPI

-8 PRINCETON
| UNIVERSITY

Parallel Programming Languages

Evolution of programming methods:
e MPI is still the dominant programming technique
e Hybrid OpenMP/MPI approach most effective on supercomputers

® GPU programming develops quickly
e CUDA
® OpenACC and OpenMP

® Message Passing directly within the GPU

e New specific parallel programming languages are developed:
e Co-array Fortran, PGAS, X10, Chapel...

® New runtime systems to handle task-based parallelism:
® Charm++, HPX, Kokkos

Distributed memory versus shared memory

MPI uses a distributed memory paradigm OpenMP uses a shared memory paradigm
* Data are transferred explicitly between ¢ Data are shared implicitly within the node
nodes through the network through the Random-Access Memory.

. ———————————————————————————————————

Node 1 r'y

T] : | |
—ll Network)

' Interconnect []
1

A

4 Node 3

|

T o o e e e e e e S e e SR e e e e e e e e

4
A
4

—————————————————————

—————————————————————————————————————— -

MPI: History

MPI 1:

e Version 1.0 (June 1994): 40 different organizations develop the MPI standard, with
various subroutines defining the first MPI library

e Version 1.1 (June 1995)

e Version 1.2 (1997)

e Version 1.3 (September 2008): final version

MPI 2:

e Version 2.0 (July 1997): include new features intentionally left out of MPI 1 such as
dynamical process management, one-sided communication, parallel I/0

e Version 2.1 (June 2008)

® Version 2.2 (September 2009)

MPI 3:
e \ersion 3.0 (September 2012): include new features left out of MPI 2 such as

collective non-blocking communications, Fortran 2003 bindings, interfacing with
external tools

MPI 4.
e work in progress (hybrid programming, fault tolerance, million-way parallelism)

MPI: Implementations

Open Source libraries : can be installed on almost any architecture (for example on
your laptop)

e MPICH2 http://www.mpich.org

e Open MPI https://www.open-mpi.org

Vendors:

e Intel MPI
e Platform MPI (IBM)
e Bullx MPI

http://www.mpich.org/
https://www.open-mpi.org/

MPI: Tools

Debuggers and performance analysis tools:

e Totalview https://www.roguewave.com/products-services/totalview

e DDT https://www.arm.com/products/development-tools/hpc-tools/cross-
platform/forge/ddt

e Scalasca http://www.scalasca.org

Scientific libraries

e Scalapack http://www.netlib.org/scalapack/

e PETSc http://www.mcs.anl.gov/petsc/

e FFTW http://www.fftw.org

https://www.roguewave.com/products-services/totalview
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/ddt
http://www.scalasca.org/
http://www.netlib.org/scalapack/
http://www.mcs.anl.gov/petsc/
http://www.fftw.org/

MPI: General Concepts

Parallel processing:
MPI is a library which allows process coordination and scheduling between millions of

processors using a message-passing paradigm.

Message attributes

® The message is sent from a source process to a target process: sender address and
recipient address

® The message contains a header
e |dentifier of the sending process (sender id)
® The type of the message data (datatype)
® The length of the message data (data length)

e |dentifier of the receiving process (receiver id)

® The message contains data

The MPI Environment

® The messages are managed and interpreted by a runtime system
comparable to a telephone provider, email system or postal company.

® Message are sent to a specific address. Receiving processes must be able to
classify and interpret incoming messages.

® An MPI application is a group of autonomous processes deployed on
different nodes, each one executing its own code and communicating to the
other processes via calls to routines in the MPI library.

MPI: Data Distribution

Data (grid cells or particles) are distributed between nodes and cores
using a domain decomposition strategy.

AAAAAAITDODOOLIO ¢ 66060

AAAAAAICCCOCOC|O G666 .

A AlD b of ¢ ¢ . .
AT W EETE R HEETEL §- CPULL L AL
AAAAAAIOOOOOT|e 66666) AR
AAAAAAlc OO O]e e e e e ety)
OOCOOOFF++F+F+HLLALLAA . STa .
0C000OOM+++++Haaaaan CPU2 | oy “iiditd 50
0O b o+ L HA N A . Il -::,’aj";"'"-f's':~ \
ol CPUB L | PUA [IALCPUS |, A ."“;?"?E.'\"ﬁ‘:!z";}"'..':"
OCOO0OOOH+++++HorALLALN : Bra A,
000000+ ++++HrrAaAAA CPU3 | - | e’ ey
I EEEEEE I XXX) M 4
000000k xxxx|looooee o
Olcpue P O cpu7t *|® cpug P ®

<> <>* ——F K| @ s
OOOOOOkkkkkx|looooeoe

VRN EEREEEEIIX X X X X |

MPI: Basics

MPI environment variables:
include mpi.h file (MPI1-Fortran or C/C++)

use mpi module (MPI2-Fortran)
MPI INIT() routine MPI_FINALIZE() routine
int MPI_Init(int *argc, char *x*argv); call [[IWEiEHY(code)
C syntax int MPI_Finalize(void); Fortran syntax call [EIMFETNAFAD(code)
1| program who_I_am
2 use mpi
3 implicit none
4 integer :: nb_procs,rank,code
5
6 call [[I#NSTEEY(code)
7
8| call [IEMCUVTMER¥AS) ([EMEIITMITER, nb_procs, code)

9 (SN MPT_COMM_RANK[(MPI_COMM_WORLD S-S V3oL I<Y)

11 print *,’I am the process ’,rank,’ among ’,nb_procs

13 call [UIENISINRYAD(code)

14 | end program who_am_I

> mpiexec -n 7 who_am_I

am process Kl among
am process [among
am process among

am process among
am process among
am process among
am process [d among

MPI: Blocking Send and Receive

1| program point_to_point

2 use mpi

3 implicit none

4

5 integer, dimension([UZWERVSUENEI#43) :: status

6 integer, parameter 1 tag=100

7 integer :: rank,value,code
8

9 call [UiA#NIEHN (code)
11 call WiAIRSTIVIRINGE (e Vil 0)M), rank, code)

13 if (rank == 2) then

14 value=1000

15 SIBNGMPT_SEND [QEWRLW NPT _INTEGER BIREF-HMPI_COMM_WORLD NCELEY

16 elseif (rank == 5) then

17 call NINEIGY(value, 1, [TRENIGVIG]Y, 2, tag, [IFMGIVITILTIIN], status, code)
18 print *,’I, process 5, I received ’,value,’ from the process 2’

19 end if

21 call [IZWNFNIVNEVA(code)

23 [end program point_to_point

> mpiexec -n 7 point_to_point

I, process], I received pYU§) from the process

With blocking send and receive, if you are not
careful, you can have a deadlock. This means the
processors will wait for something that will never
happen. The classical mistake is to first call a
blocking send towards the next processor, and then
call a blocking receive from the previous processor.

MPI: Non-Blocking Send and Receive

Communication costs can be large. The Infiniband network latency is around
microseconds, or equivalent to thousands of processor cycles. One has to add the cost of
the message itself (limited by the bandwidth of the Infiniband network around 10 GB/sec).
Non-blocking routines can be used to perform calculations in parallel to the
communication (additional level of parallelism). No risk of deadlock but risk of memory
leak if the communication is not properly terminated.

Non-blocking send: MPI ISEND ()
Non-blocking receive: MPI IRECV ()
Wait or test: MPI_WAIT(), MPI TEST()

Partial overlap Full overlap
Process 0 Process 0
The communication buffers however cannot T e
« e | e 000 (. Sending
be used before the proper completion of the o) e
send or receive. The user needs to test that e ground
the communication is successful, in order to e
. . . . finisheq?
proceed with the data -> Higher algorithmic -

complexity. _ o
Computation-Communication Overlap

12

MPI: Non-Blocking Send and Receive

0 O 0 E WD

SUBROUTINE start_communication(u)
! Send to the North and receive from the South
CALL [iZFidaegi(u(,), 1, rowtype, neighbor(S), &
tag, comm2d, request(1l), code) :
CALL [iZWEIN(u(,), 1, rowtype, neighbor(N), & G- T E e~
tag, comm2d, request(2), code) oXe) B 0

o000
] O 0O [

! Send to the South and receive from the North 00
CALL [UiWsdg4(u(,), 1,rowtype, neighbor(N), & Woo
tag, comm2d, request(3), code) o O
CALL UiZWEINI(u(,), 1,rowtype,neighbor(S), &
tag, comm2d, request(4),code) "W

E |
! Send to the West and receive from the East :WJ:

CALL [iF#sdgi(u(,), 1, columntype, neighbor(E), & I 00000000 I
tag, comm2d, request(5), code) 1 00000000 !
CALL [UiZWEIN(u(,), 1, columntype, neighbor(W), & S
tag, comm2d, request(6),code)

! Send to the East and receive from the West
CALL [UiEidaqd(u(,), 1, columntype, neighbor(W), &
tag, comm2d, request(7),code)
CALL [UZWEIDI(u(,), 1, columntype, neighbor(E), &
tag, comm2d, request(8),code)
END SUBROUTINE start_communication
SUBROUTINE end_communication(u)
CALL [UiZF@fJN§VVEH (2+xNB_NEIGHBORS,request,tab_status,code)
END SUBROUTINE end_communication

MPI: Non-Blocking Send and Receive

© 00 O C b W N -

DO WHILE ((.NOT. convergence) .AND. (it < it_max))
it = it +1
u(sx:ex,sy:ey) = u_new(sx:ex,sy:ey)

! Exchange value on the interfaces BTN A | Py 1 I m,\:f ——————
CALL start_communication(u) “ |

Ooaono
] O 0O [

! Compute u

CALL calcul(u, u_new, sx+1, ex-1, sy+1l, ey-1) W

CALL end_communication(u)

BN 1= = 5 N S— R
CALL calcul(u, u_new, sx, sx, Sy, ey)

! South

CALL calcul(u, u_new, ex, ex, sy, ey) 0)

! West S

CALL calcul(u, u_new, sx, €x, sy, Sy)

! East

CALL calcul(u, u_new, sx, ex, ey, ey)

! Compute global error
diffnorm = global_error (u, u_new)

convergence = (diffnorm < eps)

END DO

MPI: Collective Communication

General concepts

e Collective communications are making a series of point-to-point calls hidden to
the user within one single subroutine

® A collective communication always involves all processes within the
communicator.

® A collective communication is blocking. It is finished when all the necessary
point-to-point communications are completed.

e No need to add a barrier.

® No need to specify tags.

15

MPI: Collective Communication

Types of collectives

® Global synchronization (wait for all processors to arrive): MPI BARRIER()

e Collective transfer of fixed size data:
® Send data from one process to all other: MPI BCAST ()
® Split data from one process into all other: MPI SCATTER()
® Collect data from all processes into one: MPI_ GATHER()

® Same but collect into all: MPI ALLGATHER(), MPI ALLTOALL()

® Collective transfer with variable size data MPI BCASTV (),

MPI_SCATTERV(), MPI_GATHERV(), MPI_ ALLGATHERV(),
MPI_ALLTOALLV ()

e Collective transfer plus additional operation on the data (MAX, MIN, +, *...)
MPI_REDUCE(), MPI_ ALLREDUCE()

16

0 O Ut WN =

©

MPI Scatter

program scatter
use mpi
implicit none

integer, parameter :: nb_values=8
integer :: nb_procs,rank,block_length,i,code
real, allocatable, dimension(:) :: values,data

call NiZAEms\ENE (code)
- S8MMPTI_COMM_SIZE[MPI _COMM WORLD,nb_prOCS,COde)
call IESREUIVERT VY (AN lIUM:AM], rank, code)

S

block_length=nb_values/nb_ roc
allocate(data(block_length))

if (rank == 2) then
allocate(values(nb_values))
values(:)=(/(1000.+i,i=1,nb_values)/)
print *,’I, process ’,rank,’send my values array : ’,&

values(1:nb_values)
end if

call Ig{oygedi(values,block_length, JUBENNNNS, data,block_length, &

MPI_REALMPAMPI_COMM_WORLD KL Y]
print *,’I, process ’,rank,’, received ’, data(l:block_length), &

> of process 2?
call [EFENFINERA(code)

end program scatter

> mpiexec -n 4 scatter
I, process 2 send m% values array :

1002.81003. 1005. iIII]I 1007.81008.
I, process [, received FFM FOIPA of process

I, process M, received FINEM YW of process B}
I, process K], received PN BNUU of process
I, process P, received pNUUSH BNV of process

0 N3 0 W

MPI All Reduce

program allreduce

use mpi
implicit none

integer :: nb_procs,rank,value,product,code

call WIZASNSENN(code)
call NiSNeuTITEEIVAS (JliseolilMie)®], nb_procs, code)
AR MPI _COMM_RANK[{MPI_COMM_WORLD BNV aSeTe =))

if (rank == 0) then
value=10

else
value=rank

endif

IR MPT_ALLREDUCE[Q£WRTIS St it M MPL_INTEGER§MPI_PRODHMPI_COMM_WORLD eleXeY)

print *,’I,process ’,rank,’, received the value of the global product ’, product

call IRERIRYIRVAY(code)

end program allreduce

> mpiexec -n 7 allreduce

process [, received the product
process received the product

process received the product
process received the product
process received the product
process received the product
process received the product

18

OpenMP versus MPI

MPI is a multi-process model, for which communication between processes is explicit
and under the responsibility of the programmer.

OpenMP is a multi-thread model, within a single process. Communication between
threads is implicit . The management of communication is under the responsibility of the

compiler (and the operating system).

MPI is used on distributed memory architectures (clusters with Infiniband network).

Node 1
OpenMP is used on shared-memory,

multi-core architectures.

[mmmmy

Thread OpenMP

On a cluster of many large shared- Noded Node 2

memory nodes, the hybrid approach 111 | Program (e i
(OpenMP within nodes and MPI across | MFL+ OpenME |
nodes) can be optimal

I / MPI Processes

Noede 3

19

Graphical Processing Units (GPU)

High Bandwidth Memory 2

i) University of

GPU Model ~32 threads grme 141 M- WE 0

Logical View percore It o M

: ” ﬁll H:::::::: "1 “:::::::: ;
HE LR i " """" Ha i i3
] e NEEEEN = |

1 thread el i T
p e r CO re Jalj041u0D Kiowopy J01103u0D Alowoly

....................................

z Ksowow yipimpueg YBIH

20

Graphical Processing Units (GPU)

GPU programming with CUDA:

NVIDIA GPUs are usually programmed using the vendor proprietary language CUDA.
It is interfaced with C and C++ to create GPU kernels.

Warning: CUDA requires a complete rewrite of the computing intensive sections of the
code. Lack of portability. Extracting maximum performance is difficult.

GPU programming with OpenACC:

Similar to OpenMP directives to load data on and retrieve data from the GPU and
translate C and Fortran code into GPU kernels.

Better portability but usually requires also a rewrite of the routines.

Available on the PGl compiler suite.

GPU programming with OpenMP:

The newest OpenMP version (4.5) allows for offloading of parallel sections to the GPU
using the target directive.

Implemented already in GNU, Intel and PGI.

GPU programming with new generation of compilers and frameworks:
The goal is to hide the dirty details to the programmer.
Legion is an example of compiler. Kokkos is an example of framework.

21

Conclusion

Parallel computing methods:
e MPI is still the dominant programming technique
e Hybrid OpenMP/MPI approach most effective on supercomputers

® GPU programming develops quickly
e CUDA
® OpenACC and OpenMP

® Message Passing directly within the GPU

e New specific parallel programming languages are developed:
e Co-array Fortran, PGAS, X10, Chapel...

® New runtime systems to handle task-based parallelism:
® Charm++, HPX, Kokkos

22

