
1

Parallel programming with
OpenMP

2

Parallel Programming Languages

Evolution of programming methods:

• MPI is still the dominant programming technique

• Hybrid OpenMP/MPI approach most effective on supercomputers

• GPU programming develops quickly

• CUDA

• OpenACC and OpenMP

• Message Passing directly within the GPU

• New specific parallel programming languages are developed:

• Co-array Fortran, PGAS, X10, Chapel…

• New runtime systems to handle task-based parallelism:

• Charm++, HPX, Kokkos

3

Distributed memory versus shared memory

4

OpenMP: History

Multi-threading using directives:

Many vendors were using their own multi-threading directives (CRAY, NEC, IBM…)
during the era of vector processing (mid-90s).

On October 28th 1997, they all met and adopted the Open Multi Processing standard.

OpenMP is specified by the Architecture Review Board (ARB).

OpenMP 2.0: Nov 2000: modern Fortran constructs

OpenMP 3.0: May 2008: task-based computing

OpenMP 4.0: July 2013: external devices

OpenMP 5.0: under review

5

OpenMP: General Concepts

Multi-threading

• An OpenMP program is executed by only one process, called
the master thread. The corresponding piece of code is called a
sequential region.

• The master thread activates light-weight processes, called the
workers or slave threads. This marks in the code the entry of a
parallel region.

• Each thread executes a task corresponding to a block of
instructions. During the execution of the task, variables can be
read from or updated in memory.

• The variable can be defined in the local memory of the thread,
called the stack memory. The variable is called a private
variable.

• The variable can be defined in the main shared (RAM) memory
also called the heap. The variable is called a shared variable.

6

OpenMP: Compilation

Compilation directives and clauses:
• They are put in the program to create the threads, define the

work and data sharing strategy, and synchronize shared variables
• They are considered by the C, C++ or Fortran compilers as mere

comment lines unless one specifies –openmp or –fopenmp on
the compilation command line

Functions and routines:
• OpenMP contains several dedicated functions (like MPI). They are

part of the OpenMP library than can be linked at link time.

Environment variables:
• OpenMP has several environment variables that can be set at

execution time and changed the parallel computing behavior.

Example
Compilation:

ifort –openmp prog.f90
gfortran –fopenmp prog.f90

Environment variable:
export OMP_NUM_THREADS=4

7

OpenMP: Parallel Region

• In a parallel region, by default, the data sharing attribute of variables is shared.

• Within a single parallel region, all concurrent threads execute the same code in parallel.
• There is an implicit synchronization barrier at the end of the parallel region.

• Using the DEFAULT clause, it is possible to change the default attribute to PRIVATE.

• If a variable is PRIVATE, it will be stored in the stack memory of each thread. Its value is

undetermined when entering the parallel region.

8

OpenMP: Parallel Region

• Using the FIRSTPRIVATE clause, it is possible to force the initialization of a PRIVATE
variable to the last value it has outside the parallel region.

• Using the NUM_THREADS() clause allows to set the number of children in a parallel region.

• OMP_GET_NUM_THREADS() gives the size of the active team

9

OpenMP: Parallel Loop

• A parallel loop is a do-loop where each iteration is independent from the others

• Work decomposition by distributing the loop iterations

• The parallel loop is the one that follows immediately after a DO directive

• Loop indices are always private integer variables.

• Loops without loop indices or while loop are not supported by OpenMP.

10

Parallel Loop: Work Scheduling

• The distribution strategy is set by a SCHEDULE directive.

• Proper scheduling can optimize the load-balancing of the work.

• By default, the runtime sets a global synchronization the end of the loop.

• The NOWAIT directive can remove the barrier.

• One can set many DO directives inside a PARALLEL region.

11

OpenMP: Parallel Loop

12

OpenMP: Miscellaneous

• In a parallel loop, if one needs to perform a
global operation, one uses the REDUCTION
clause.

• Logical: .AND., .OR., .EQV., .NEQV., Intrinsic:
MAX, MIN, IAND, IOR, IEOR, Arithmetic: +, x, -.

• Each thread computes partial results, which
are combined at the end of the parallel loop.

• The directive !$OMP BARRIER forces the synchronization of all threads within a
parallel region.

• The directives ATOMIC and CRITICAL can be used to force a serial variable
update and avoid race conditions.

13

OpenMP: Best Practices

• Minimize the number of parallel regions in the code.

• Adjust the number of threads to the size of the problem (threads come with
overhead).

• Always parallelize the outermost loop on the outermost moving index of an array
(non-consecutive in memory)

• Conflicts between threads can lead to poor cache memory management (the so-
called cache misses). Level 1 and 2 cache memory management is key to OpenMP
performance.

• Performance analysis with OpenMP can be done using several functions provided
by OMP_LIB to measure time. The most useful is: time = OMP_GET_WTIME()
gives the elapsed time in seconds.

14

OpenMP: Best Practices

• The performance of your code will depend on the architecture. Be aware of
“false” shared memory architectures !

• On most present day machine, local cache memory is faster than main RAM
memory.

• Mapping your data in memory is a key performance factor.

• On Linux, the memory is mapped to a given socket on a “first touch” basis.
This is very important for “Non Uniform Memory Access” machines for which
the main memory is not really shared but distributed across the node.

