Parallel programming with
OpenMP

-8 PRINCETON
UNIVERSITY

Parallel Programming Languages

Evolution of programming methods:
e MPI is still the dominant programming technique
e Hybrid OpenMP/MPI approach most effective on supercomputers

® GPU programming develops quickly
e CUDA
® OpenACC and OpenMP

® Message Passing directly within the GPU

e New specific parallel programming languages are developed:
e Co-array Fortran, PGAS, X10, Chapel...

® New runtime systems to handle task-based parallelism:
® Charm++, HPX, Kokkos

Distributed memory versus shared memory

MPI uses a distributed memory paradigm OpenMP uses a shared memory paradigm
* Data are transferred explicitly between ¢ Data are shared implicitly within the node
nodes through the network through the Random-Access Memory.

. ———————————————————————————————————

Node 1 r'y

T] : | |
—ll Network)

' Interconnect []
1

A

4 Node 3

|

T o o e e e e e e S e e SR e e e e e e e e

4
A
4

—————————————————————

—————————————————————————————————————— -

OpenMP: History

Multi-threading using directives:

Many vendors were using their own multi-threading directives (CRAY, NEC, IBM...)
during the era of vector processing (mid-90s).

On October 28th 1997, they all met and adopted the Open Multi Processing standard.
OpenMP is specified by the Architecture Review Board (ARB).

OpenMP 2.0: Nov 2000: modern Fortran constructs

OpenMP 3.0: May 2008: task-based computing

OpenMP 4.0: July 2013: external devices

OpenMP 5.0: under review

OpenMP: General Concepts

Multi-threading

e An OpenMP program is executed by only one process, called 0123 Nb>0f threads
the master thread. The corresponding piece of code is called a I
sequential region.

EEEN
e The master thread activates light-weight processes, called the

workers or slave threads. This marks in the code the entry of a
parallel region.

e Each thread executes a task corresponding to a block of
instructions. During the execution of the task, variables can be
read from or updated in memory. EEn

e The variable can be defined in the local memory of the thread,
called the stack memory. The variable is called a private
variable.

QwiL],

® The variable can be defined in the main shared (RAM) memory Y
also called the heap. The variable is called a shared variable.

OpenMP: Compilation

Compilation directives and clauses:

® They are put in the program to create the threads, define the
work and data sharing strategy, and synchronize shared variables

® They are considered by the C, C++ or Fortran compilers as mere
comment lines unless one specifies —openmp or —fopenmp on
the compilation command line

Functions and routines:
® OpenMP contains several dedicated functions (like MPI). They are
part of the OpenMP library than can be linked at link time.

Environment variables:
® OpenMP has several environment variables that can be set at
execution time and changed the parallel computing behavior.

Example
Compilation:
ifort —-openmp prog.f90
gfortran —fopenmp prog.f90
Environment variable:
export OMP NUM THREADS=4

T

| Compilation

¢

Lmkmg,

hE

Execution

Directives

« Library

Environment
\ variables

OpenMP: Parallel Region

® |n a parallel region, by default, the data sharing attribute of variables is shared.
e Within a single parallel region, all concurrent threads execute the same code in parallel.
® There is an implicit synchronization barrier at the end of the parallel region.

program parallel
'$ use
implicit none
real 1 oa
logical :: p

a = 92290. ; p=.false.

! $OMP PARALLEL
'$ p = [EEERIRIVINERNA ()
print *,"A = ",a, &

u; p = n’p

! $OMP END PARALLEL

end program parallel

dhcp-94-236:~ teyssier$ gfortran -fopenmp prog.f90
dhcp-94-236:~ teyssier$ export OMP_NUM_THREADS=4
dhcp-94-236:~ teyssier$./a.out

92290.0000 T

92290.0000 T

92290.0000 T

92290.0000 T
dhcp-94-236:~ teyssier$ |

e Using the DEFAULT clause, it is possible to change the default attribute to PRIVATE.
e |f a variable is PRIVATE, it will be stored in the stack memory of each thread. Its value is
undetermined when entering the parallel region.

program parallel
implicit none

real :: a

a = 92000.

! $0MP PARALLEL DEFAULT (PRIVATE)
a=a + 290.
print *,"A = ",a

! $OMP END PARALLEL

end program parallel

dhcp-94-236:~ teyssier$ gfortran -fopenmp prog.f9@
dhcp-94-236:~ teyssier$ export OMP_NUM_THREADS=4
dhcp-94-236:~ teyssier$./a.out

290 .000000

290.000000

290.000000

290.000000
dhcp-94-236:~ teyssier$ ||

OpenMP: Parallel Region

e Using the FIRSTPRIVATE clause, it is possible to force the initialization of a PRIVATE
variable to the last value it has outside the parallel region.

program parallel
implicit none dhcp-94-236:~ teyssier$ gfortran -fopenmp prog.f90
real :: a dhcp-94-236:~ teyssier$ export OMP_NUM_THREADS=4
dhcp-94-236:~ teyssier$./a.out
a = 92000 922900000
92290 0000
07290 0000

a =a + 290.)

print *,"A = ",a 92290.0000 .
Out of parallel region, a= 92000.0000
print*,"Out of region, A =",a dhcp-94-236:~ teyssier$l
end program parallel

e Using the NUM_THREADS() clause allows to set the number of children in a parallel region.
e OMP_GET_NUM_THREADS() gives the size of the active team

program parallel dhcp-94-236:~ teyssier$ gfortran -fopenmp prog.f90
implicit none dhcp-94-236:~ teyssier$ export OMP_NUM_THREADS=4
| $OMP PARALLEL NUM_THREADS (2) jECp'gZ'gng :ey ss?"'"i ejp“ttOMP—DYNAMIC:tr“e
print *,"Hello !" Cp_ ; P eySSlel" ./a.ou
I $0MP END PARALLEL Hello !
Hello !
| $OMP PARALLEL NUM_THREADS(3) Hi !
print *,"Hi !" Hi !
! $OMP END PARALLEL Hi |
end program parallel dhcp-94-236:~ teyssier$ I

OpenMP: Parallel Loop

A parallel loop is a do-loop where each iteration is independent from the others

Work decomposition by distributing the loop iterations

The parallel loop is the one that follows immediately after a DO directive
Loop indices are always private integer variables.

Loops without loop indices or while loop are not supported by OpenMP.

Parallel Loop: Work Scheduling

The distribution strategy is set by a SCHEDULE directive.

Proper scheduling can optimize the load-balancing of the work.

By default, the runtime sets a global synchronization the end of the loop.

The NOWAIT directive can remove the barrier.

One can set many DO directives inside a PARALLEL region.

10

OpenMP: Parallel Loop

program parallel
'$ use OMP_LIB
implicit none

integer, parameter :: n=4096
real,dimension(n) :: a
integer :: i, rank, nb_threads

'$OMP PARALLEL PRIVATE(rank,nb_threads)

rank=0MP_GET_THREAD_NUM()

nb_threads=0MP_GET_NUM_THREADS()

'$OMP DO
do i=1,n

print* rank,i
a(i) = 92290. + real(i)

end do

'$OMP END DO
'$OMP END PARALLEL

end program parallel

Romain:~ teyssier$ gfortran -fopenmp prog.f90
Romain:~ teyssier$ export OMP_NUM_THREADS=4
Romain:~ teyssier$./a.out | more

1

SFRPrNWOR NWeERNWOSRNWOERNWESERLRNWS

1025

1
3073
2049
1026

2
3074
2050
1027

3
3075
2051
1028

4
3076
2052
1029

5
3077
2053
1030

6
3078
2054
1031

7

program parallel
'$ use OMP_LIB
implicit none
integer, parameter ::
real,dimension(n) :: a
integer :: i, rank, nb_threads
'$OMP PARALLEL PRIVATE(rank,nb_threads)
rank=0MP_GET_THREAD_NUM()
nb_threads=0MP_GET_NUM_THREADS()
'$OMP DO SCHEDULE (STATIC,128)

do i=1,n

print*,rank,i
a(i) = 92290. + real(i)

end do

'$OMP END DO

'$OMP END PARALLEL
end program parallel

Romain:~ teyssier$ gfortran -fopenmp prog.f90
Romain:~ teyssier$ export OMP_NUM_THREADS=4
Romain:~ teyssier$./a.out | more

2

ONWERONWRONWERERONWROENWERERONWERERS

257

1
129
385
258

2
130
386
259

3
131
387
260

4
132
388
261

5
133
389
262

6
134
390
263

7

program parallel
'$ use OMP_LIB
implicit none

integer, parameter :: n=4096
real,dimension(n) :: a
integer :: i, rank, nb_threads

I$OMP PARALLEL PRIVATE(rank,nb_threads)

rank=0MP_GET_THREAD_NUM()
nb_threads=0MP_GET_NUM_THREADS()
'$OMP DO SCHEDULE (RUNTIME)
do i=1,n
print*,rank,i
a(i) = 92290. + real(i)
end do
'$OMP END DO
I$OMP END PARALLEL

end program parallel

Romain:~ teyssier$ export OMP_SCHEDULE="GUIDED,16"
Romain:~ teyssier$./a.out | more
0 1
1025
1793
2369
2
1026
1794
2370
3
1027
1795
2371
4
1028
1796
2372
5
1029
1797
2373
6
1030
1798
2374
7
1031

1700

NN OR WNOR WNOOR WNOOR WNGOSR WNGORWN

11

OpenMP: Miscellaneous

In a parallel loop, if one needs to perform a

global operation, one uses the REDUCTION program parallel

implicit none

Claljse integer, parameter :: n=5

' integer :: i, s=0, p=1, r=1

! $OMP PARALLEL

Logical: .AND., .OR., .EQV., .NEQV., Intrinsic: do i = 1,
MAX, MIN, IAND, IOR, IEOR, Arithmetic: +, X, -. p

end do

.)
Each thread computes partial results, which print *,"s =",s, "; p =",p, "; r =",r

. end program parallel
are combined at the end of the parallel loop.

nunn
* ¥ +
WN=B

R'T ®n

The directive ' SOMP BARRIER forces the synchronization of all threads within a
parallel region.

The directives ATOMIC and CRITICAL can be used to force a serial variable
update and avoid race conditions.

OpenMP: Best Practices

Minimize the number of parallel regions in the code.

Adjust the number of threads to the size of the problem (threads come with
overhead).

Always parallelize the outermost loop on the outermost moving index of an array
(non-consecutive in memory)

Conflicts between threads can lead to poor cache memory management (the so-
called cache misses). Level 1 and 2 cache memory management is key to OpenMP
performance.

Performance analysis with OpenMP can be done using several functions provided

by OMP_LIB to measure time. The most useful is: time = OMP_GET WTIME ()
gives the elapsed time in seconds.

13

OpenMP: Best Practices

The performance of your code will depend on the architecture. Be aware of
“false” shared memory architectures !

On most present day machine, local cache memory is faster than main RAM
memory.

Mapping your data in memory is a key performance factor.
On Linux, the memory is mapped to a given socket on a “first touch” basis.

This is very important for “Non Uniform Memory Access” machines for which
the main memory is not really shared but distributed across the node.

14

