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Performance

First principle of optimization

Don’t

Drawbacks of optimization:

Sacrifice clarity

Sacrifice maintainability

Second principle of optimization

But you must.

Importance of optimization:

The problems you can solve are determined by the
performance of your code.

Access to shared resources (clusters) often requires
demonstrating good performance.
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Measuring Performance

Quanta of time on a computer is a clock period (or cycle), which is
the inverse of frequency at which processor runs.

Processor frequency is variable (e.g. turbo-boost) on most CPUs,
which complicates performance measurements.

Generally,

performance / 1/(time)

Goal is to maximize performance (minimize time) in each step of
computation (calculations, I/O, communication, etc.)
Performance can be measured using

profiling tools like gprof and VTune

a benchmark real-world application program or kernel run on
hardware being tested.

For example, the Linpack benchmark is used for the top500 list.
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We’re spoiled by Moore’s Law

Prediction by Gordon Moore, 1965.

The transistor density in integrated circuits will be doubled every
two years.

Since performance scales with transistor density, Moore’s Law has
been interpreted as a prediction about the former as well.

Actually, performance doubles about every 18 months.

Shows no sign of ending (see plot next slide from top500.org).

But, we are forced to use mass-produced commodity processors
that were not designed for scientific computation
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Hardware

Increasing importance of computation driven in part by the
staggering growth in performance of the world’s fastest computers.
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Koomey’s Law

Koomey et al. 2011

The energy efficiency of integrated circuits will be doubled every
eighteen months.

Currently power consumption is a limiting factor in HPC centers.

A ⇠ 106 increase in energy-efficiency of processors is still possible
before fundamental physical limits will be encountered.

Koomey’s Law will allow HPC centers to double performance every
18 months, at fixed power usage, by adding more cores.

However, running code on millions of cores presents new
challenges.

Algorithms must scale nearly perfectly.

Mean time between failure of nodes becomes hours. Codes
must be able to adapt to failures.
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Understanding CPU Model and Architecture 

• CPU is the heart of the machine – it reads in, decodes, and executes 
machine instructions, working on memory and peripherals. 


• CPUs and other resources are managed by the Linux kernel.

• In Linux you can use lscpu or cat /proc/cpuinfo to get the 

CPU architecture details.
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CPU, sockets, cores and threads

• A core is a hardware term that describes the number of independent central 
processing units in a single computing component (die or chip).

• A socket is the interface between the CPU and the motherboard. Adroit has two 
sockets and 16 cores in each socket so there is 32 physical cores available on this 
server. The work on the node is called MIMD as Multiple Instructions Multiple Data.

 
• A thread is a software term for the basic ordered sequence of instructions that can 

be processed by a single core. A core with two hardware threads can execute 
instructions on behalf of two different software threads without the overhead of 
switching between them. On adroit there is only 1 thread per core.

• The number of logical cores, which equals “Thread(s) per core” × “Core(s) per 
socket” × “Socket(s)” i.e. 1x16x2=32. Adroit has a total of 32 logical cores. You can 
check this also using:  > nproc --all 

 
• Based on CPU MHz and CPU max MHz, the clock rate is 3.9 GHz.
 



5

Understanding cache memory 

CPU cache is important for the efficiency of your applications. There are different 
levels of cache memory and they are used to keep data close to the CPU.
 
• L1 Cache

• The L1 cache has the smallest amount of memory (often between 1K and 
64K) and is directly accessible by the CPU in a single clock cycle, which 
makes it the fastest as well.

• It stores the most frequently used data that remain in L1 until some other 
data becomes more frequent. If so, it is moved to the bigger L2.
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Understanding cache memory 

CPU cache is important for the efficiency of your applications. There are different 
levels of cache memory and they are used to keep data close to the CPU.
 
• L2 Cache

• The L2 cache is the middle level, with a larger amount of memory (up to 
several megabytes) adjacent to the processor, which can be accessed in a 
small number of clock cycles.

• Less frequently used data are moved from L2 to L3.
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Understanding cache memory 

CPU cache is important for the efficiency of your applications. There are different 
levels of cache memory and they are used to keep data close to the CPU.
 
• L3 Cache

• The L3 cache, even slower than L1 and L2, may be twice as fast as the main 
memory (RAM).

• Each core may have its own L1 and L2 cache; but they all share the L3 
cache.

• Size and speed are the main criteria that change between each cache level: 
L1 < L2 < L3.

• Whereas original memory access may be 100 ns, for example, the L1 cache 
access can be 0.5 ns.
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Understanding cache memory 

Example of cache memory architecture for a 6 core socket
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Cache is organized in lines, and each cache line can be used to store a specific 
line in memory.

Each CPU has its separate cache and its own cache controller.

If a processor references main memory, it first checks cache for the data. If it's 
there, then it's referred to as a cache hit. If it's not there, then you've got a 
cache miss.

A new cache line fill is triggered by a cache miss. It means that data is loaded 
from main memory, which is slow.

So, a cache miss involves extra activity which translates into poor performance.

Understanding cache memory 
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Controlling data movement

With high-level programming languages, you can partially control data 
movement.

• Cache to Register: no control but usually fast
• RAM to cache: indirect control (cache-aware algorithms, first touch strategy)
• Disk to RAM: complete control 

Some algorithms are better at exploiting the cache hierarchical structure 
(cache-aware or cache-friendly algorithms that minimize cache misses). Try to 
exploit maximally data already in cache (data re-use for more cache hits). 

For parallel execution, follow the default hardware strategy based on first touch 
assignment of the data.

Read / Write operations require explicit statement in the code. Some variants 
are faster than other (direct RAM memory copy versus write function).
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Why understand the hardware

Surprisingly common complaint

My code runs fine on a small problem, but when I try it on a bigger
problem, it slows to a crawl. What is going on?

Most likely, the larger problem is too big for the memory of the
machine

Data structures too big to fit in the cache (will run much slower)
Data structures too big for the main memory (will run much,
much slower)
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Why understand the hardware

Surprisingly common complaint

My code runs fast on large problems, but is 3-4x slower on small
problems. What is going on?

Most likely, vectorization is inefficient on small problems
Loop limits smaller than vector length of registers
Might be able to redesign data to make vectorization more
efficient

But what is this vectorization anyways?
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Computer Architecture

If you plan to write efficient code on modern parallel processors,
you have to understand how those processors work1.

Virtually all processors use register-to-register architecture.

Data processed by CPU enters and leaves via registers (usually 80
or more bits in size)

C = A + B becomes Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

Each operation requires at least one clock period, so in this example
we expect the execution time to be at least four clock periods.

1See Hennessy & Patterson Computer Architecture, 5th ed., Appendix G to see
how floating point arithmetic really works.
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Pipelining: most important hardware optimization

Same sequence of instructions are often repeated many times (for
example, work inside for/do loops).

Can optimize by designing processor so that different steps in
sequence can execute at the same time, like a pipeline.

Clock cycle: 1 2 3 4 5 6 7 8 9
instruction i IF ID ME EX WB

instruction i+1 IF ID ME EX WB
instruction i+2 IF ID ME EX WB
instruction i+3 IF ID ME EX WB
instruction i+4 IF ID ME EX WB

IF=instruction fetch; ID=instruction decode; EX=execute;
ME=memory reference; WB=write back.

Pipeline in example takes 9 clock cycles to complete 5 instructions.
Once pipeline is full, a result is produced every clock cycle.
Un-pipelined processor would take 5*5 = 25 cycles
Pipelining is an example of instruction level parallelism (ILP)
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Vector/SIMD Processors

Vectorization is an example of data parallelism. Identical
instructions are performed on multiple datum simultaneously.
Schematic 2-element vector pipeline:

Clock cycle: 1 2 3 4 5 6 7
element i LD AD ML WB

element i+1 LD AD ML WB
element i+2 LD AD ML WB
element i+3 LD AD ML WB
element i+4 LD AD ML WB
element i+5 LD AD ML WB
element i+6 LD AD ML WB
element i+7 LD AD ML WB

LD=load; AD=add; ML=mulitply; WB=write back
When pipeline is full, we get two results (4 flops thanks to chaining)
every clock period! On latest processors, vector length is now 512
bits (16 single precision words).
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Understanding vector operations 

Intel AVX-512 is a set of CPU instructions that impacts compute, storage, and 
network functions. The number 512 refers to the width, in bits, of the register file, 
which sets the parameters for how much data a set of instructions can operate 
upon at a time. This is called SIMD as Single Instruction Multiple Data.

Intel AVX-512 doubles the width of the register compared to its predecessor, and it 
also doubles the number of registers to further decrease latency. It also contains 
additional optimizations to further accelerate tasks for modern workloads

SSE

AVX2

AVX512
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Role of compilers

Today, most code is written in one of a small number of languages.
Hardware is now designed to optimize instructions produced by
compilers of that language. Compilers can

Integrate procedures into calling code (inline)

Eliminate common sub-expressions (do algebra!)

Eliminate unnecessary temporary variables (reduces
loads/stores)

Change order of instructions (e.g. move code outside loop)

Pipeline

Vectorize loops automatically

Optimize register allocation

In short, compilers can do a lot!
So let the compiler do all the work.
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• Just type > man gfortran  or > man gcc 


• -O0: no optimization useful for debugging


• -O1: conservative optimization, does not increase code size


• -O2: normal optimization, vectorization and loop optimization


• -O3: aggressive optimization, takes longer and risky


• -fopenmp: activate OpenMP parallelization


• -g: activate extra information for debuggers


• -x f95-cpp-input: activate preprocessor directives


> gfortran -O3 -fopenmp -x f95-cpp-input -DNDIM=2 code.f90 -o code 

Compilation Options for GNU Compiler
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Memory Design

Stores both data and instructions, organized into bits, bytes, words,
and double words.

Order of bits in byte is standardized, but not order of bytes in word.

Little endian: leading byte last (little end): 76543210 (Intel)

Big endian: leading byte first (big end): 01234567 (IBM)

Most memory today is Dynamic Random Access Memory
(DRAM) - bits stored in 2D array, accessed by rows and columns.
Typical access time 100ns.

DRAM comes on Dual Inline Memory Modules (DIMMs).

Since 1998, memory on DIMMs doubles every 2 yrs. This is slower
than Moore’s Law, and is leading to a growing memory/processor
performance mismatch.
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Reading data from RAM is SLOW!

DRAM must be constantly refreshed. During a refresh, the memory
cannot be accessed. Typically 5% of reads have to wait for a refresh
to finish.

Reading destroys data in DRAM, so it must be re-written after a
read.

Both introduce latency.

Memory bus operates at slower clock speed than CPU. Typical
bandwidth is 4 GB/s. That is about one byte per clock period.

Good performance requires maximizing flops per memory access
(ideally should be bigger than one).
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Hierarchical Memory

Exploits principle of locality to increase memory performance

Most programs access adjacent memory locations sequentially,
e.g. location M at time t; location M + 1 at time t + 1.

Build memory closest to processor using fastest design (cache)

Main memory built from slower (less expensive) DRAM

Additional memory can be built from even cheaper disks

Usually cache is subdivided into several levels (L1, L2,[L3]). Data is
transferred between levels in blocks: cache line

When item at address A is loaded into memory, an entire cache line
containing A (and A + 1, A + 2, etc) is moved, not just A.

Then, if processor needs A + 1 on next cycle, it is already in cache.

Cache hit (miss) occurs if data is (is not) in cache when needed. Hit
rate is fraction of memory requests which are hits.

Goal of Programmer: write code to maximize hit rate
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Example: cache efficiency

from
http://eigen.tuxfamily.org/index.php?title=Benchmark

http://eigen.tuxfamily.org/index.php?title=Benchmark
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Access Time

Effective access time for hierarchical memory

teff = Htcache + (1� H)tmain

where teff = effective access time
tcache = access time of cache
tmain = access time of main memory
H = hit rate

Suppose tcache = 10ns, tmain=100ns, H=98%

teff = (0.98)(10) + (1-0.98)(100) = 11.8ns

Almost as fast as cache!
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Write code to maximize cache hits

Always access data contiguously: (1) by ordering loops so inner loop
runs over neighboring data elements (2) use stride of one.

for (i=0; i<=100; i++) {
for (j=0; j<=100; j++) { /* BAD */
a[j][i] = b[j][i]*c[j][i];

}
}

for (i=0; i<=100; i++) {
for (j=0; j<=100; j++) { /* GOOD */
a[i][j] = b[i][j]*c[i][j];

}
}

Note: exactly the OPPOSITE ordering is necessary in Fortran.

If there are multiple ways to reference address of a variable (e.g.
through pointers), it is said to be aliased. In this case, the variable
cannot be allocated to a register. This can greatly reduce
performance. Moral for programmer:

Use pointer references carefully and sparingly!

Avoid indirect addressing: a[i[j]]]
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Array Storage in Memory

In C and C++, array elements are stored contiguously in memory using a row-major 
indexing scheme. Fortran uses a column-major indexing scheme.


m[0][0] m[0][1] m[0][2]…                            m(1,1) m(2,1) m(3,1)…
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Other ways to improve performance

Save state to reduce overall computation

Cache frequently-used data structures

interleave communication and computations for parallel code

choose the best data design!

choose the best algorithm!



28

• Inlining: replace a function call by its content in the calling routine.


• Loop unrolling:


• Divisions:


• Loop tiling:


• Local versus global variables: better cache management.


Other Compiler Optimizations
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Data structures

Why care about data structures?
Using a more efficient data structure is one of the best ways of
speeding up a code

Common data structures
Arrays
Linked lists
Hash tables
Binary trees
Heaps

Won’t discuss more here, but always remember the importance
of choosing the best data structure at the start

very hard to change design of data structures later
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Use an efficient algorithm

Most of the speed-up in scientific computing comes from
algorithms, NOT from faster computers.

Examples of algorithm developments
Linear algebra

iterative methods versus direct solvers

Elliptic solvers
Multigrid to accelerate Jacobi or Gauss-Seidel iteration
ADI, Conjugate gradient methods
FFT

n-body problems
tree codes
Fast multipole methods

etc., etc.
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The importance of scaling

Simple example: Column 8 of Programming Pearls
Pattern matching code, 4 different algorithms (n3, n2, n log n, n)

Problem size n 1.3n3 10n2 47n log2 n 48n
103 1.3 secs 10 msecs 0.4 msecs 0.05 msecs
104 22 mins 1 sec 6 msecs 0.5 msecs
105 15 days 1.7 min 78 msecs 5 msecs
106 41 yrs 2.8 hrs 0.94 secs 48 msecs
107 41 millennia 1.7 wks 11 secs 0.48 secs

Estimate your requirements
Use back-of-the-envelope calculations to estimate the
time/memory required for your task. Do you need a better
algorithm/data structure?
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Profiling

A profile measures where a program spends its time
Frequency counts of routines
Total time spent in each routine (and its children)

Note: the term profile was invented by Donald Knuth, in his paper
"Empirical study of FORTRAN programs," 1971.

Romain Teyssier
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When to worry about performance?

Donald E. Knuth (author of TEX, and The Art of Computer
Programming):
"There is no doubt that the grail of efficiency leads to abuse.
Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency have a strong negative impact
when debugging and maintenance are considered. We should
forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil."
—Donald Knuth, 1974.

Romain Teyssier



Performance Processor Design Other tricks Profiling

And yet. . .

"Yet we should not pass up our opportunities in that critical 3%. A
good programmer will not be lulled into complacency by such
reasoning, [s]he will be wise to look carefully at the critical code;
but only after that code has been identified. It is often a mistake to
make a priori judgments about what parts of a program are really
critical, since the universal experience of programmers who have
been using measurement tools has been that their intuitive guesses
fail."

Romain Teyssier
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Concentrate on the hot spots

Say your program spends 90% of its time in one routine, and
takes 100 seconds to run

Say you cut the run time of that one routine by a factor of 3.
Overall code now takes 40 seconds to run (60% less time)
Instead, say you cut the run time of the whole rest of the program
by a factor of 3. Code now takes 97 seconds to run (3% less time).
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The bottom line

Consider efficient algorithms and data structures from the
beginning: these can make a big difference

An O(n log n) algorithm instead of an O(n2) algorithm; Jacobi
iteration vs. multigrid, FFTs for a Poisson solver.
Binary trees, heaps, hash tables

In general, don’t worry too much about efficiency as you write.

If efficiency is important, profile it once it’s working, and find
the "hot spots" (the critical 3%).

Design good interfaces so that different algorithms may be
swapped in.

Don’t sacrifice clarity for the sake of efficiency, especially early
on.
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Tools

The traditional unix tools are prof and gprof. Both work by
instructing the compiler and linker to add extra information. A
corollary of this need to compile and link specially is that libraries
(e.g. libc) won’t show up in the profile unless you use gprof-enabled
versions. Another consequence is that they don’t understand
dynamically loaded libraries (e.g. import afw).

Romain Teyssier
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PC Sampling

Every so often the system interrupts your program and notes what
it’s doing; the register pointing to the next instruction to execute is
called the Program Counter, so this approach is often called "PC
Sampling".

gprof allows access to these system counters.

Modern processors also contain dozens of hardware counters,
special registers that record what the processor is doing at all times.

More advanced tools allow access to hardware counters, and
therefore more information
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imageAccess v. gprof

We can compile and link with -pg and run gprof imageAccess 400
% cumulative self self total

time seconds seconds calls us/call ms/(100*call) name
34.47 0.22 0.22 1000 220.63 22.063 add1(Image&, int)
26.64 0.39 0.17 1000 170.49 17.049 add2(Image&, int)
17.24 0.50 0.11 1000 110.32 11.032 add3(Image&, int)
12.54 0.58 0.08 1000 80.23 8.023 set(Image&, int)
9.40 0.64 0.06 1000 60.17 6.017 Image::Image(int, int)

add1 is a little slower than add2
imageAccess 4000

% cumulative self self total
time seconds seconds calls ms/call ms/call name
52.31 1.21 1.21 10 121.35 121.35 add1(Image&, int)
17.72 1.62 0.41 10 41.12 41.12 Image::Image(int, int)
10.37 1.87 0.24 10 24.07 24.07 add2(Image&, int)
9.94 2.10 0.23 10 23.07 23.07 set(Image&, int)
9.94 2.33 0.23 10 23.07 23.07 add3(Image&, int)

(note that we ran the program only 10, not 1000, times.)
The larger image (4000x4000 as opposed to 400x400) runs a factor
of 3 slower, but add1’s even worse; why?

Romain Teyssier

Romain Teyssier



Allinea MAP
• Allinea MAP

• Commercial profiler
• C, C++, Fortran
• Lightweight GUI

• Source code profiling
• Compute, I/O, Memory, MPI bottlenecks

• Getting started:
http://www.princeton.edu/researchcomputing/faq/profiling-with-allinea-ma/

Romain Teyssier
https://researchcomputing.princeton.edu/support/knowledge-base/map



Intel VTune
• Intel VTune Amplifer XE

• Commercial Profiler
• Extraordinarily powerful 

(and complicated)
• Nice GUI 

• Source code profiling
• Shared memory only

• Serial
• OpenMP
• MPI on single node

• Getting started:
http://www.princeton.edu/researchcomputing/faq/profiling-with-intel-vtun/

Romain Teyssier
https://researchcomputing.princeton.edu/faq/profiling-with-intel-vtun



Intel Trace Analyzer and Collector
• Intel Trace Analyzer and 

Collector (ITAC)
• Creates timeline for every 

process

• Good for MPI scaling & 
bottlenecks

• Can have large overhead 
& big files

• Getting started:
http://www.princeton.edu/researchcomputing/faq/using-intel-trace-analyze/

Romain Teyssier
https://researchcomputing.princeton.edu/faq/using-intel-trace-analyze



Performance Processor Design Other tricks Profiling

Lessons Learned

Don’t optimize prematurely.

Whenever possible, iterate over arrays in their natural order.

Use a sampling profiler to get an accurate but imprecise picture
of overall performances (including cache and disk I/O) to
identify hotspots.

Use more advanced tools (next lecture) to get a detailed
picture of exactly what’s going on in a piece of code.

Romain Teyssier
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Learn more about programming
• Take APC 524 to learn more about software engineering.

• Take a PICSiE mini-course

 https://researchcomputing.princeton.edu/learn/workshops-live-training

• Intro to Linux Command Line

• Intro to Programming using Python

• Getting Started With the Research Computing Clusters

• Reproducible HPC Research with Containers: Docker & Singularity

• Introduction to Version Control using Git

• Leveraging the NVIDIA A100 GPU AI and HPC

PICSciE is the Princeton Institute for Computational Science and Engineering. 
Research Computing is collaboration between PICSciE and the Office of Information  
Technology. 

https://researchcomputing.princeton.edu/learn/workshops-live-training
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