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Moore’s law

Gordon Moore: founder of Intel.

Statement of the law:
The number of transistors that can be placed on an integrated circuit
at a reasonable cost doubles every two years.

Hardware evolution:
* Processor frequency reached a plateau around 3GHz since
2002-2004 but Moore’s law is still true
* More cores per chip (many cores architectures, GPU...)

Energy consumption and cost:
» Dissipated electric power scales at clock frequency to the cube.
» Dissipated power by square cm is limited by cooling



Moore’s law

Moore’s Law: The number of transistors on microchips doubles every two years [SSgWEaE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world'’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.



The Memory Wall

Von Neumann Architecture

Programming instructions (stored-program) and
data share the memory unit. They are loaded to
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the Central Processing Unit (CPU) for execution. [ Co‘r'1trlol bus E
: v v

Results are loaded back to the memory unit. 1 Aufdiess B | £
| * Data bus ¥ | L%

The Von Neumann Bottleneck:

 Memory bandwidth is not increasing as quickly as processor computing power
 Memory latency is decreasing very slowly

* Number of computing cores per memory units is increasing

Consequences and solutions:

 The CPU wastes cycles while waiting for data.
 Introduction of cache memory (L1, L2, L3)

« Parallel access to memory (vector architectures, AVX)



Performance

Performance in the Top 500
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Number of cores in the Top 500
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Performance (Gflop/s)

Performance per core in the Top 500
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Parallel Processing

Gene Amdahl (1967): Amdahl’s Law

Statement of the law:
The theoretical maximum speedup obtained by
parallelizing a code ideally, for a given problem with
a fixed size:

1 1

Speedup (N) = T () =
D |

T, : execution time of the serial code
T, : execution time of the parallel code
o : fraction of the code that is not parallel

N : number of processors

1
Speedup (N) — — for N — 400
Q



Strong Scaling

Theoretical Maximum Speedup

Cores a (%)
0 0.01 0.1 1 2 5 10 25 50
10 10 999 | 991 | 917 | 847 | 6.90 | 526 | 3.08 | 1.82

100 100 99.0 91.0 | 50.2 | 336 | 168 | 9.17 | 3.88 | 1.98

1000 1000 909 500 91 47.7 | 19.6 | 9.91 | 3.99 | 1.998
10000 | 10000 5000 909 | 99.0 | 49.8 | 19.96 | 9.99 | 3.99 2
100000 | 100000 | 9091 990 | 999 | 499 | 19.99 | 10 - 2
00 00 10000 | 1000 | 100 50 20 10 = 2

§

P .
90 peS% pes%

g

pe20% ) pe20%
- -~ Id

Specdap
Specdup
i ¥ %8 8 %08 ¥ 8




Weak Scaling

John Gustafson and Edwin Barsis (1988): Gustafson’s Law

Statement of the law:

The theoretical maximum speedup obtained by parallelizing a code ideally for a
problem of constant size per core:

Ts (N)
T, (N)
Assuming that the execution time of the non-parallel part of the code remains
constant, one has:

TS (N) — OéT() —|—N(1 —Oé)TO

Tp (N) — OzTO -+ (1 —Oz)TO — TQ

This law is more optimistic than Amdahl’s l[aw:

Speedup (V) = =a+(1—a)N

Speedup (V) — (1 — a)N for N — 400

In both laws, everything is determined by , the non-parallel fraction of the code.

Reducing «, is called “parallel code optimization”.
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Hardware Evolution

Technical trends:

 Computing power is doubling every year

* Massively parallel and many-cores architectures are dominant

» Since 2010, Graphical Processing Units become a key player

* Increasing hardware complexity (hybrid system, multiple cache layers)
 Memory per core is plateauing or decreasing

* Performance per core is plateauing

e Disk Input/Output bandwidth is increasing very slowly

Consequences:

* |t is necessary to exploit many (relatively slow) cores

 The memory per core is constant or even decreasing (memory limited)
Raw performance of individual core not increasing anymore

Higher level of parallelism and I/O bottlenecks

More complex architecture (cache levels, accelerators, latency...)
Multi-disciplinary approach, concept of "co-design”
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Communication Network

Connecting millions of processors requires a high -performance network
Most existing systems use “Infiniband” or variations.

Need a network switch to interconnect all the nodes

Need high quality fiber cables to connect each node to the switch

Level 2
Switches
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P/2 Ports P2 Ports P2 Ports P12 Ports

Fat-tree network: non-blocking network topology invented by Charles Clos (1953)
Depending on how many switches you can afford, you might choose blocking
configurations.

http://www.mellanox.com/clusterconfig/

http://clusterdesign.org/fat-trees/
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Key network parameters (switches and cables) are the latency and the bandwidth
Infiniband network: latency 0.5-1 microsec, bandwidth 5-10 GB/sec
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Parallel Programming Languages

Evolution of programming methods:
e MPI is still the dominant programming technique
e Hybrid OpenMP/MPI approach most effective on supercomputers

® GPU programming develops quickly
e CUDA
® OpenACC and OpenMP

® Message Passing directly within the GPU

e New specific parallel programming languages are developed:
e Co-array Fortran, PGAS, X10, Chapel...

® New runtime systems to handle task-based parallelism:
® Charm++, HPX, Kokkos
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Distributed memory versus shared memory

MPI uses a distributed memory paradigm OpenMP uses a shared memory paradigm
* Data are transferred explicitly between ¢ Data are shared implicitly within the node
nodes through the network through the Random-Access Memory.
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